Complexity in Hamiltonian-driven dissipative chaotic dynamical systems.

نویسندگان

  • Lai
  • Grebogi
چکیده

The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, strange nonchaotic, and chaotic with different positive Lyapunov exponents. Finite perturbations in initial conditions or parameters can lead to a change from nonchaotic attractors to chaotic attractors. However, arbitrarily small perturbations can lead to dynamically distinct chaotic attractors. This work demonstrates that the interplay between conservative and dissipative dynamics can give rise to rich complexity even in physical systems with a few degrees of freedom. @S1063-651X~96!05311-1#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

A Criterion for the Onset of Chaos in Weakly Dissipative Periodically Driven Systems

We generalize Chirikov's resonance-overlap criterion for the onset of global chaos in Hamiltonian systems to describe the onset of chaotic attractors in weakly dissipative systems.

متن کامل

Duality in Distributed-Parameter Control of Nonconvex and Nonconservative Dynamical Systems with Applications

Based on a newly developed canonical dual transformation methodology, this paper presents a potentially useful duality theory and method for solving fully nonlinear distributed-parameter control problems. The extended Lagrange duality and the interesting triality theory proposed recently in finite deformation theory are generalized into nonconvex dissipative Hamiltonian systems. It is shown tha...

متن کامل

Phase Transitions and Chaos in Long-Range Models of Coupled Oscillators

We study the chaotic behavior of the synchronization phase transition in the Kuramoto model. We discuss the relationship with analogous features found in the Hamiltonian Mean Field (HMF) model. Our numerical results support the connection between the two models, which can be considered as limiting cases (dissipative and conservative, respectively) of a more general dynamical system of damped-dr...

متن کامل

On Generating Chaotic Dynamics in Nolinear Vibrating Systems

The paper is aimed at demonstrating the mechanism triggering chaotic phenomena in nonlinear dynamical systems, i.e. the formation of nonattracting invariant chaotic sets (chaotic saddles), which originates from the global bifurcations. Characteristic examples of the resulting chaotic system behaviors, such as chaotic transient motions, fractal basin boundaries and an unpredictability of the fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 1996